Range Validation Using Kalman Filter Techniques
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A method is presented whereby range pseudo-residuals may be improved to the level
required for the purposes of data validation. Basically, the method proposed is a
measurement updating process which utilizes Bierman’s adaptation of the Kalman filter
measurement updating algorithms together with process noise compensation to account
for model errors. This algorithm involves combining the currently available range predic-
tions and measurements to produce an updated range residual measurement whose
accuracy is constrained by the range data quality and by the estimated error in the
prediction. The algorithm is compact and fast, and is thus suitable for on-line applications

in network control or at the station.

l. Introduction

The problem of near-real-time validation of ranging data
has, to now, never been completely resolved mainly because
the output of the ranging machine (Planetary Ranging Assem-
bly, hereafter referred to as the PRA) is only a vernier meas-
urement and not an absolute measure of distance or elapsed
time. The problem is well described by Berman (Ref. 1) in an
article which describes a technique for validating range within
a pass by using the range and doppler data types to produce a
“pseudo-DRVID” which can be used for this purpose. This
approach proved fruitful for validating data within a pass but
left the problem of validating range data after intervals when
no radio metric data has been collected unresolved.

In general the problem occurs because the predicted observ-
ables are dependent on the probe ephemeris determined by the
Orbit Determination Program (ODP) on the basis of fitting a

model to past observations. Errors in the determination of this
ephemeris show up as an error bias and an error drift rate in
the predicted range observables. When these predictions are
beat against the actual observables in near-realtime, the error
growth eventually causes the residuals' to separate beyond the
limits of the modulo and, in fact, if the data are sparse, there
may be several modulos lost in the interval. Such conditions
render the residuals almost useless for the purposes of data
validation.

There are three basic ways by which this problem can be
resolved:

(1) Place requirements on the flight project to maintain the
predicted ephemeris at a specified level of accuracy.

! These residuals are usually termed pseudo-residuals to distinguish them
from the actual ODP residuals.
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(2) Develop a special purpose differential correction com-
puter program for network control operations which
would correct the orbital elements based on the incom-
ing data so as to reduce the drift and bias errors in the
predicted ephemeris.

(3) Develop statistical and/or numerical techniques using
only the data types and information currently available
to the DSN to compute improved range estimates from
the predicted ephemeris.

The first method, although not requiring new software,
would be costly and is contrary to the present mode of
operation. The reason for this is that the Navigation Team
updates the orbit in terms of weeks of data, and orbit predicts
are produced for 8 days at a time based on orbits that may be
updated once a month. To change this method of operation to
meet the requirements would mean tracking and updating the
probe ephemeris almost every other day. Considering the
workload that current operations are placing on an already
overburdened system, one must reject this first approach as
being unrealistic.

The second approach, though seemingly reasonable, never-
theless has its own drawbacks. A differential correction
process to produce dynamically corrected orbital elements
would result in a sizeable computer program which, because of
the demand to be made upon it, would require that either a
mini- or 4 midi-computer be dedicated to this purpose alone.
Furthermore, such a computer program could not be operated
with untrained personnel; a team of knowledgeable technicians
would be required. There is currently no in-house expertise of
this type within the DSN. Even if these problems were to be
resolved, the cost and time of developing and checking out
such a program could be considerable.

The third approach appears capable of performing the task
within reasonable cost and effort bounds. Berman (Refs. 1 and
2) has achieved partial success by employing doppler data to
validate range measurement within a tracking pass or within
contiguous passes. The method presented here demonstrates
how currently available range predictions and measurements
can be sequentially processed in an on-line fashion, using a
Kalman filter (Ref. 3) to permit validation of range even when
there are substantial gaps in the data coverage. By modeling
the errors on the predicted observables, the method has the
potential of being able to maintain residuals of sufficient
accuracy to detect system malfunctions for periods of uptoa
year with data taken every 20 days.

Previous numerical experiments documented in Ref. 4 have

demonstrated the efficiency, stability, and reliability of the
U-D factorized Kalman filter (cf Refs. 3 and 5). A U-D filter
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formulation was chosen because the ultimate goal is to develop
a real-time algorithm that can function on a limited precision
minicomputer.

The filter model described in Section III was tested with
simulated data and with real data obtained from one of the
Viking spacecraft. A simple linear stochastic filter was devel-
oped and applied to the Viking data, giving accurate range
residual estimates for the four-month period of data available
for our test. Although further tests and analysis remain to be
performed, the initial results reported demonstrate the effi-
ciency of the approach.

Il. Problem Formulation

The major cause for divergence of the predicted spacecraft
range is the effect of unmodeled velocity and acceleration
errors. The basis of the approach is to assume that the system-
atic components of these errors along the line-of-sight from
the earth to the spacecraft can be modeled locally with a low
order polynomial. This assumption is consistent with past
analyses of spacecraft tracking errors (Ref. 6), and is evidenced
in the characteristics of our test data (Section IV). Figure 1
illustrates the typical localized behavior of this error process
when the spacecraft trajectory is not affected by any gravita-
tional forces other than those due to the sun.

The actual signal traversal time between the observing sta-
tion and the spacecraft is designated T, while the traversal
time predicted from the spacecraft ephemeris is designated T,
The time difference measured as an observable, TM, may then
be represented as

Ty =T, tut)-n(OM €}
where

v(t) = noise on the data including errors due to medium
effects :

M = modulo as determined by frequency and hardware
characteristics

n(r)

integral number of modulos inherent in the round-
trip delay

il

[(T, + A2))/M] in¢ (see footnote 2)

2 [21in¢ indicates the integral part of a.



A residual is produced by differencing the observed measure-
ment from a nominal estimate obtained from the spacecraft
ephemeris. Thus,

AT, =T, -T, )]
where
T,=T,-n M
% = integral number of modulos that enter into T L

ie., A= [T,/M],

int

Assume that the difference between the actual and
observed measurements may be expressed as

_ N . 1. »
ATe—T—Te:eO(t)+eot+2eot 3)

Then the observable difference, AT oy > MaY be written as

z(t) = [aT (A7) €(z)) + v(1)] modulo M (4a)

or

z(t) = aTl (At))e@)+v()-An()M  (4b)

where

z(t) = AT,
An(t) = n(t)- 7 ()
al (ar) = (1, A, (Ati)2 /2)
Ati =t- tl.
ef (1) = (e(1), E(1), % (1)

The role of ¢, is to periodically introduce a time shift so that
the expansion, Eq. (3), can better retain its validity. Mapping
equations corresponding to this time update are

€t) = ®(5) () * B, ©)

where

€ (t,.) = 3-component state vector at time 7,

i (t].) = state transition matrix from time Ly to 4
w; = stochastic white noise
B = [0,0,1]7

With the exception of the modulo M term in Eq. (4), the
problem described is an ordinary parameter estimation or
filtering problem (depending on whether the acceleration time
constant, 7, of Eq.(7) is small or large). The structure of the
Kalman filter is well suited to this type of problem. Its
recursive structure allows one to perform the following
functions:

(1) Recursively estimate (¢;) and produce an estimate of
the innovations variance,E[z(t].) - al (At) e (t].[t]._ D12
for use in data validation.

(2) Detect and pass outlier points; viz., points having an
observation error greater than, say, 30, are flagged and
omitted from the filtering process (o is the innovations
standard deviation).

(3) Maintain the condition | z(¢) <M |, i.e., keep f"M close
to T),.

Maintaining the modulo constraint is of principal impor-
tance because it dllows us to deal with an essentially linear
problem. This can be seen clearly by referring to Eq. (4b) and
noting that the differences between the observation z; and the
filter predicted estimate 3} =z(gle;_ | ) is given by

Az, =2z -7,
j i T

al (A1) (e (1) - e(tle, N +v(r) - dn(OM

(6)

]

where

An(t) = n-n = [(AT, +v)/M].

int

The validity of the rejection criterion depends on the assump-
tion that An=0. As long as this is true, the data can be
processed in a conventional manner. Whenever |Az| >3, an
additional test is made to determine whether An #0. If it is,
the datum can be corrected for the modulo rollover and the
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standard rejection criterion can then be applied. The test is
based on the assumption that

| Az;| << M2

When An > 0, either our estimated function or the actual data
must go through modulo rollovers at distinct times. When this
happens, the anomaly can be detected because, then,

IAZ]_[ > |M- 30|

Note how this rollover procedure introduces a major non-
linearity into the problem structure.

lll. A Compact and Efficient Recursive
Filter Solution

In this section a recursive filter algorithm is described that
is well suited for on-line range calibration. Besides being com-
pact and efficient, the mechanization (Refs. 3 and 5) is numer-
ically accurate and stable. The specific form chosen for our
dynamic model is

’Ve I At A2 ¢ 0
€ I = 0 1 At € + |0
EJ 0 0 m € W;
j+1 ]
(7)
where Ar=1¢; - r], m = exp (- At/7), and {w; } is a white noise

sequence with variance (1 - m?) g.(=)?.

This model is not completely general, but it seems to
adequately compensate for model errors in space navigation
problems (Refs. 6 and 7). Accelerations which might otherwise
be modeled as constant parameters are allowed to have modest
time variations. By acknowledging such variations, the pitfall
of processing data over a large period of time is avoided, thus
bypassing the computation of acceleration error uncertainties
that are unacceptably small.® The inclusion of process noise
prevents the filter from being restricted by the past behavior
of the data. When process noise is not included, it often
happens that the filter diverges when too much data is pro-

3Smaller than experience would predict or smaller than is consistent
with the observed residuals.
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cessed. Using the U-D factored form of the Kalman filter, we
express the filter mechanization in the following sequential
steps®:

(1) State propagation

OE

™
i

€=¢€ (tjlt]._l), and €=¢ (tj+ ) lt].)

(2) Deterministic covariance update
P = UDUT = (¢0) D (#0)"

(3) Process noise covariance update
P=UDUT = UDUT + Diag (0,0,02 2)

U-D are obtained using the Agee-Turner rank one

update algorithm of Ref. 5. U-D refers to filter values

at time j, and U-D refers to the predicted values at time

jt+1.

(4) Preliminary measurement update calculations

£ = TTal ; al = (1, Ar, A2)2)

g = Df
a = 0%+ fTg (innovations variance)
Az g

(5) Residual validation
Az=z-a'®
(6) Kalman gain computation
v= Ug (normalized gain)
(7) Measurement covariance update
050" -5 (5- L a”) O
The U-D measurement update tormulae of Ref. 3 sim-

ultaneously computes o, U and D; 0D represents

P(t,‘+1 j+1)

*Time subscripts are omitted. It is assumed that we start with “™ filter
quantities at step j, perform a time update, steps (1) — (3), and obtain
“~* predict quantities at step j+ 1; and complete the cycle by
computing " filter quantities, steps (4) — (7), which refer to time
i+ 1.



(8) State update
€=¢+v (Az/a)

€ now represents € (t].+ ) It].H)

Figure 2 illustrates one way in which this algorithm could
be configured for the Tracking Real-Time Monitor Computer.
Conditioning or pre-processing would be required to properly
calibrate the incoming data. A start-up module could opti-
mally be included to compute the a priori statistic and initial
values required for an initial start. These can be computed
from one or two passes of range and doppler data. The other
two functions contain the Kalman sequential filter and its
concomitant logic. Steps (1) — (5) would be performed in the
first functional unit, while Steps (6) — (8) would be performed
in the remaining functional unit.

Consideration could also be given to placing the algorithm
at each station since all data and parameters required are
available at each site. Figure 3 points out how this algorithm
could be utilized within the existing radio metric data collec-
tion and processing system.

IV. Results

The filter algorithm just described was coded and tested on
the Univac 1108 computer using simulated data. The data
were produced assuming that the trajectory divergency phe-
nomenon could be represented by a second-order polynomial.
The data were perturbed by adding noise from a Gaussian
pseudo-random number generator. Several tests using simu-
lated data were executed with unvarying success. The follow-
ing test parameters represent one of the more significant:

Modulo number = 100 us

Polynomial coefficients used to initialize the simulation
estimate:

m
It

98 us &~ 15-km position error

0
éO = 10 us/day = 35-mmy/s velocity error
€, = 005 ps/day> ~ 2 X 10" ¢-mm/s® acceleration

error
Filter a priori uncertainties:

o = 02us=30m

€

0. = 0.05 us/day = 0.17 mm/s

o.. = 0.001 ,us/day2 ~4 X 10”8 mm/s?

Simulation parameters:

n(t) = N (0, 100), 100 nanosecond (ns) gaussian white
noise

At = 0.08-day (2-h) sample interval used to generate
data residuals

At = 0.3 day (7.2 h), length of data span
A1, = 20 days, time between data spans

At = Lot = I-yr interval between state estimate
time updates.’

7 = 7 days

To compress the results for illustration purposes, the filter
residuals were averaged on a pass-by-pass basis (i.e., over each
data span) over the one year period of the test. The upper
graph in Fig. 4 represents the residual output of the filter, Az,
while the lower graph represents the innovations variance, o.

The filter reacted well to the simulated data; the residuals
remained within bounds, and the innovations variance con-
verged to the level of noise impressed on the data. This is a bit
surprising because the filter model does not quite match the
simulated data model, and the nature of the rollover effects is
highly nonlinear. One rather interesting feature of this simula-
tion that led us to pursue more conclusive testing was the
observation that here was a case (although admittedly fabri-
cated) where the range residuals could be tracked over an
entire one-year period without the need of a trajectory update.
Note that the space between tracking periods was 20 days.

In order to further verify the filter formulation, data from
several spacecraft were collected and processed. The results
from processing range data from the Viking A mission are
presented here.

In processing these data, it was found that there was a
greater sensitivity to the & priori model statistics and filter
parameters than in the simulated cases. Although the diver-
gence model matched the long term behavior of the observ-
able, there were local trends in the data that tended to weaken

5Using this large time step corresponds to using a constant parameter
model; the value of 7 in this case is immaterial.
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the predictive capability of the filter, thus preventing accurate
processing over more than two or three days. The general
nature of this data is illustrated in Fig. 5 with the scale
distorted to illustrate the local features.

At this' point the stochastic update feature of the filter
became extremely important. After some experimentation, it
was found that accurate estimates could be obtained with the
evidently mismatched model if appropriate filter parameter
values were chosen, viz., the epoch or state mapping interval,
At,, and the time constant or correlation interval, 7. The
following set of test parameters permitted us to validly process

4 months of randomly spaced data with some gaps of 1-1/2 to
2 weeks:

Modulo number = 1000 us

€ = 293 us

€. = 0.0004 us/day
€ = 1us/day?

g = 10us

o, = 1.0 us/day

0. = 1.0 ps/day?

n(t) = S0ns
at, = 0.03days (45h)
T = 14 days

The adaptability of the filter to the data is demonstrated by
the sample of the Viking A range data results. Figure 6 shows
the filter results for 6 passes of data between 25 October and
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4 December 1975. This data sequence began approximately
50 days after spacecraft launch and has data gaps of up to 18
days. The quality of the data fit is demonstrated by noting
that in Fig. 5 the input data were on the order of micro-
seconds (1076 seconds), whereas the filter in this case has
reduced the residuals to the nanosecond (102 second) level.
The anomalous behavior of the data on 1 December 1975
which had not been previously detected in the original data is
clearly in evidence. The anomalous behavior has not yet been
verified because station logs are not detailed enough to reflect
hardware malfunctions at this level. It is believed, however,
that the anomaly is attributable to either hardware noise or a
charged particle pulse in the transmission media. More analysis
of this and other data phenomena remains. There is, however,
no doubt that achieving the type of results would have been
difficult if not impossible using the conventional least squares
filter techniques that are commonly used for orbit
determination.

V. Conclusions

The tests using both simulated and real data demonstrated
that satisfactory real-time, automated estimation of our non-
linear ranging process is achievable. The factorization filter
algorithm design is compact and efficient, and is suitable for
use in a mini-computer or micro-processor where processing
time and memory constraints are important considerations.

Further tests must be performed before this ranging resi-
dual estimation technique can be determined suitable for use
during actual operations. Future studies are planned to inves-
tigate model modifications to account for a diurnal velocity
term that is often encountered in the actual data and for the
inclusion of doppler data to improve the filter predictive
characteristics. A final filter design will be arrived at by tuning
the filter parameters so that acceptable performance is
achieved under the various conditions that the filter is
expected to operate.
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Fig. 2. Possible RTM mechanization of Kalman filter
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Fig. 5. Typical range residual trends in Viking spacecraft data
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